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ABSTRACT  
 
A new mathematical model for estimating and correcting 
the residual neutral wet and hydrostatic delay of radio 
waves along aircraft trajectories, calibrated and tested 
with data from numerical weather models and weather 
balloons, as well as actual aircraft GPS data, has shown, 
so far, good promise for its use with or without 
meteorological information. Further testing, with different 
kinds of non-GPS “truth” data, is planned for the near 
future. This model is the sum of four error states, each 
multiplied by a specially chosen function of height. It 
represents the residual delay that remains uncorrected, 
due to imperfections in the refraction correction of GPS 
data during pre-processing (e.g., with a simple model 
based on a standard atmosphere). The residual zenith 
delay estimated with the new model is transformed into 
slant delay along the path of the radio signals, with the 
Niell’s mapping functions.  
The new model is intended for use in precise (sub-
decimeter), kinematic, recursive solutions, in very-long-
baseline differential and point-positioning navigation, 
whether carried out in post-processing or in real time.  
The recursive, point-positioning, kinematic solutions 
whose results are shown here, include error states for the 
rover’s position and zenith delay, and for the floated 
biases of the ionosphere-free linear combination of the L1 
and L2 carrier phase (or Lc). In differential mode, the 
solutions should also include as unknowns the base-
stations’ residual zenith delays, modeled as simple 
random walks, one for each fixed site.  
The results of the preliminary tests described here, some 
based on hours of airborne GPS data, suggest that this 
model is suitable for GNSS kinematic navigation with 
sub-decimeter precision. 

INTRODUCTION  
 
Radio waves propagation in the neutral atmosphere. 
This paper deals with the correction of the delaying effect 
of the neutral atmosphere---that is, excluding the 
ionosphere---on the propagation of radio signals of 
systems such as GPS. Unlike the ionospheric delay, the 
neutral delay is practically the same at all radio 
frequencies, so the use of more than one carrier frequency 
does not help to correct this delay. This neutral delay is 
usually referred to as “tropospheric refraction’ (or 
“tropo”), although a significant portion of it is due to the 
air above the tropopause. At any given point P in the 
atmosphere, the ambient air pressure P, temperature T, 
and water vapor partial pressure ew can be use to calculate 
the refractivity N = 106(n-1), where n is the refraction 
index, which is the ratio n = c/v of the speed of light in 
vacuum c to the phase speed of light v within an 
infinitesimal volume of air around P. At GPS frequencies, 
c > v, so n > 1, and the relationship between N and P, T, 
and ew is: 
 
N = c1 P/T + c2 ew/T + c3 ew/T2    (1)  
 
c1, c2, c3 are known constants derived from the physical 
properties of the atmospheric gases. The integral of  N 
with respect to distance along a direct path, or ray, 
followed by radio waves, equals the total neutral delay of 
those waves as they travel from one end of that ray to the 
other (e.g., from satellite transmitter to GPS receiver) [1]. 
This is the basis of the procedure known as ray tracing (in 
actual calculations, N is computed at closely spaced, 
discrete points along the ray, divided by 106, and 
integrated numerically using, say, Simpson’s rule. If the 
ray is a vertical line drawn between a point P on or above 
the terrain, and another point directly above it, and at the 
top of the atmosphere, then the integral of N is the zenith 
delay ZD at P. This delay can be conveniently divided 
into two components: one that is a function of the total air 
pressure P at that point (the first term in (1)), known as 
the hydrostatic zenith delay ZDh, and a second 
component that depends only on the partial pressure of 
water vapor ew, that is known as the wet zenith delay ZDw 
(the sum of the second and third terms in (1)). Also, quite 
conveniently, the slant delay SD along a line from a point 



P inside the atmosphere (e.g., the location of a GPS 
receiver) to another point S outside it (such as the location 
of a GPS satellite) can be computed as the product of the 
zenith delay and a mapping function m. This is usually 
given in the form of a continuous fraction, an idea 
introduced by Marini in 1972 [2], and implemented in 
various models, including the still widely used Marini-
Murray model [3]. The main independent variable is the 
elevation E of the point S above the horizon of P: m is 
approximately equal to the inverse of sine(E). E is the 
“geometric” elevation angle, so the rays are considered to 
be straight lines between the locations defined by the 
Cartesian coordinates of P and S, ignoring the effect 
known as ray bending. This effect is important in land 
surveying, where theodolites, EDM’s and similar devices, 
employ electromagnetic waves often directed near 
horizontally to a target. For satellite systems, where radar, 
laser, and other tracking devices are pointed mostly 
upwards, the problem becomes more tractable. The 
advent of satellites, and the need to track them precisely, 
gave added impetus to efforts to calculate better the 
atmospheric delay along upward pointing rays, resulting 
in models still widely in use with systems such as GPS. 
Most models perform quite well down to an elevation 
between 10 and 20 degrees, below which they become 
progressively less precise. For very low elevations, extra 
parameters known as refraction gradients have to be 
added to the models. Since very low elevation signals 
tend to have poor reception, an elevation cutoff of 10 
degrees seems reasonable for kinematic solutions, which 
are particularly sensitive to poor data. So gradients are not 
considered here. In some formulations, such as that of 
Niell [4], [5], m can also be given as a function of latitude 
φ, height H, and time---in Day Of Year form, as tDOY. In 
others, such as Herring’s [6], the mapping functions are 
also a function of the ambient temperature T at P. There is 
a wet mapping function mw, and a hydrostatic function mh, 
and they can be used to calculate the total slant delay for a 
receiver at a given location P as follows: 
 
SD(total) = ZDw mw(E,tDOY,φ,Η) + ZDh mh(E,tDOY,φ)  (2) 
 
(The independent variables in (2) are those in the Neill 
mapping functions, which are the ones used in this work.) 
 
MODELLING THE NEUTRAL ATMOSPHERE 
 
Neutral delay models. Many formulas for calculating SD 
as a function of E and other variables have been proposed 
over the years [1, ibid.], calibrated with meteorological 
data from weather balloons launched at  many different 
places and times of the year, to be used to correct 
refraction delays. They may or may not be used with local 
meteorological data measured at P (e.g., P, T, %humidity 
R, or else ew derived from Td). Some formulas are given 
in terms of zenith delay and mapping function, as in (2), 
others are compact, single functions of the same variables. 

None of the formulas are good enough to correct the 
satellite data to the extent needed for very precise 
navigation. So the error in the correction, the residual 
troposphere, has to be estimated by adjusting one or more 
parameters as part of the navigation solution. The 
simplest approach is to use nominal values for P, T, and 
humidity of an average, or standard atmosphere. For 
example: P = 10015 millibar, T = 20oC, R = 0 (or ew = 0). 
To calculate ZDw with meteorological data, the value of 
the partial water vapor pressure ew is usually obtained 
from other quantities, for example temperature T and dew 
point temperature Td using the Clausius-Clapeyron 
equation [7]. In the case of 100% humidity, there can be 
condensation with or without frost [8]. This affects the 
value of ew, but not enough to matter here. 
 
Availability of meteorological data. P, T, Td, are 
quantities that can be measured directly with instruments 
carried by weather balloons, or that can be obtained from 
the GRIB-formatted files of numerical weather models 
(NWM). To understand the effect of the atmosphere on 
radio signals, in order to develop and validate models of 
neutral delay, it is essential to have access to that kind of 
meteorological information.  
Fortunately, in recent years a great deal of weather data 
has been gathered worldwide with satellites, aircraft, 
weather balloons, GPS receivers, water vapor 
radiometers, etc., from which global and large-area three-
dimensional numerical weather models (NWM) are 
obtained. These models are constantly updated every few 
hours. Such NWM models, and much of the 
meteorological data used to create them, are nowadays 
openly available over the Internet to scientists, engineers, 
and also the general public, from NOAA and other 
organizations. Estimates of water vapor content made 
with networks of GPS receivers such as GPSMET are 
also used as data for the NWM [9]. Also in recent years, 
several studies have been published on the effect of 
various constituents of the atmosphere on the propagation 
of radio waves [10]. Propagation delays caused by those 
parts of the atmosphere visible to the naked eye (mist, 
clouds, rain drops, snow flakes, ice crystals, hail, dust), 
have been studied, and found to be, usually, much smaller 
than the delays due to the invisible components of air: 
water vapor, nitrogen, oxygen, CO2, and minor quantities 
of other gases.  
 
Some helpful characteristics of the neutral delay. 
Figure 1 shows vertical profiles of T and Td, in what is 
known as a skew T plot (so named because the 
temperature axis is inclined at 45o), with total air pressure 
P as the vertical axis variable. This plot has been  
computed using data from a NWM model, at a 
geographical location and epoch entered by the user 
through a graphical interface provided at a Web site run 
by NOAA, and accessible without restrictions to the 
general public. In addition, an ASCII data file with this 



information in numerical form, repeated at intervals of 
two hours, can be obtained through the same interface. 
The irregular, jagged character of these profiles reflects 
the complexity of the atmosphere.  
However, in spite of such complexity, three very helpful 
facts greatly simplify the modeling of the zenith delay. 
These facts are:  
(1) Both wet and hydrostatic zenith delay components are 
strongly correlated between points on the same horizontal 
surface, with correlation lengths of hundreds of 
kilometers [11]. 
(2) At any given location, both components usually 
change very slowly over time, and the residual delay does 
so at a variable rate of 1-2cm per hour [12], [13]. 
(3) The vertical profiles of refractivity and, consequently, 
their integrated values ZDw and ZDh, are very smooth 
functions strongly resembling decaying exponential 
functions of height above the geoid, or “sea level”: the 
orthometric height H   [14]. 
Facts (1) and (2) justify the widely used approach of 
modeling the residual zenith delay with a simple random 
walk [13, ibid.]. This approach has been used quite 
successfully with static receivers, in geodesy and 
meteorology, and in navigation. In the latter case, with 
receivers on surface vehicles such as ships, cars, trains, 
etc., the process noise of the random walk may be 
increased somewhat, to account for the additional change 
in delay caused by the change in position. But with  
aircraft, which can change position much more, and much 
faster, both vertically and horizontally, than other types of 
vehicle, it is more difficult to find a good dynamic model 
for that delay, particularly one that is suitable for 
implementation in a Kalman filter solution [15], [16].  
 

 
 

Figure 1. Vertical profiles of temperature (red) and dew 
point temperature (blue), in a skew T plot at a location 
specified by the user of this public NOAA Web page. 
Such plot is created automatically, using information from 
one of NOAA’s Rapid Update Cycle (RUC) NWMs. 
 
With aircraft, the total (wet plus hydrostatic) residual 
zenith delay is often treated as a random walk with a 
rather large amount of process noise, or as a white noise, 

uncorrelated from one (filter update) epoch to the next 
[16, ibid.]. 
 
Taking advantage of some characteristics of the delay. 
The ideas presented in this paper are inspired on a model 
developed, at the beginning of this decade, at the 
University of the Armed Forces, in Munich, by Torben 
Schueler, as part of the work for his doctoral thesis on 
combining GPS measurements with pre-existing NWM 
models [17]. The original use for this model was to 
condense the very large GRIB-formatted files of the 
weather models, into much smaller files containing only 
the information relevant to GPS meteorology, preserving 
enough information to calculate very precisely the vertical 
zenith delay profile, and then to convert this delay to total 
precipitable water vapor content in the column of air on 
any given location and time within the spatial and 
temporal coverage of the NWM model. Schueler showed 
very clearly that, in spite of being shaped by complex 
physical causes, such vertical profiles can be described 
quite precisely with a simple expression. In particular, the 
wet zenith delay can be represented to better than 1 cm, 
up to heights of more than 10 km, with a decaying 
exponential function of height, while the hydrostatic 
zenith delay can be represented, with similar accuracy, 
with another exponential plus a quadratic function: 
 
ZDw = ZD0w exp(-[H-H0]/Qw) ± (< 1cm)  (3a) 
 
ZDh = ZD0h exp(-[H-H0]/Qh)+A (H-H0)

2+ 
 B (H-H0) +C ± (< 1cm)   (3b) 
 
(Notation: “exp(x)” means “ex”.) There are seven 
unknown parameters: 2 scale factors ZD0w, ZD0h; 2 
positive scale heights Qw, Qh, and 3 parabolic terms A, B, 
C. H is the orthometric height of P, and H0 is an 
orthometric reference height (e.g. sea level (H0 = 0), the 
height of a survey marker at an airfield, etc.) 
Schueler did not give a second equation for ZDh; instead, 
he gave one for the pressure P. But there is a simple 
relationship between both, so converting from his original 
formulation to that of (3b) is immediate. The relationship 
between ZDh and P, according to Saastamoinen [19], is: 
  
ZDh = 0.0022767 P / F(φ, H)                              (4a), 
 
F(φ,H) = 1-0.00266 cos(2φ)-0.00028 H                      (4b) 
 
P is in millibars (or HPa), and H  is in kilometers. 
 Altogether, there is a total of seven unknown parameters 
in this model: ZDw0, ZDh0, Qw, Qh, A, B, and C. By 
adjusting them, it is possible to fit very closely the actual 
zenith delay along the whole column of air. Schueler 
thoroughly checked the correctness of this 7-parameter 
model by making extensive use of vertical profiles 
obtained from global medium-resolution and local high-
resolution numerical weather models, and from weather 



balloons. I have independently verified that model, and 
obtained similar results, doing ray-tracing with NOAA’s 
newest high-resolution Rapid Update Cycle, or RUC 
weather models (13 km grid) covering the mainland of the 
USA, and its overseas territories. I have done the same 
thing using weather balloon data, collected in various 
parts of the world, in different seasons, at heights of 
between 0 and 20 km. Table 1 shows the results of fitting 
the exponential part of the 7-parameter model to weather 
balloon data from different locations in the Northern and 
Southern hemisphere, during local winter and summer. 
These are the results of some of the many tests I made 
with balloon data distributed by NOAA through its 
unrestricted Web site. The table shows great variability in 
scale heights, particularly for the wet component, with an 
excellent exponential fit to the wet component, and a less 
successful fit to the hydrostatic component, which is why 
Schueler added three quadratic terms to his model. 
Because the exponential amplitudes and scale heights in 
(4a-b) change considerably with horizontal position and 
with time, these parameters would have to be estimated 
repeatedly in a kinematic solution for a prolonged, far-
ranging survey. In meteorology, for which the model was 
intended, this is not a problem. But in precise navigation 
this presents quite a practical challenge, because to 
estimate those exponential parameters with a linear, 
Bayesian least squares procedure, would mean using very 
poor first order approximations to the highly non-linear 
exponential terms. There are ways to do this, in principle, 
but it could be quite hard, in practice. 
 

TABLE I 
EXPONENTIAL FITS TO ZENITH DELAY 

PROFILES FROM WEATHER BALLON DATA  
OF BOREAL WINTER/AUSTRAL SUMMER 2006 

(ALL VALUES ARE IN METERS) 
 

 SITE NAME 
 

Lat, Long 
(degrees) 

SCALE 
HEIGHT 

H wet      
H hydro 

RMS OF 
FIT  ZDW 

MAX 
|RESIDUAL| 

RMS 
OF FIT 

ZDH 
MAX 

|RESID| 
ALASKA         

(71N, 78W) 
3517   
6988 

0.0007   
0.0013 

0.015   
0.026 

S POLE          
(90S, 00W) 

1810   
6947 

0.0002   
0.0003 

0.010   
0.017 

ANTARCTICA  
(78S, 67E) 

1509   
7297 

0.0003   
0.0008 

0.008   
0.015 

CORDOBA      
(31S, 64W) 

1736   
8470 

0.0089   
0.0171 

0.018   
0.019 

BELEM          
(  1S, 38W) 

1805   
7794 

0.0061   
0.0133 

0.019   
0.058 

N. ALESUND  
(79N, 12E) 

1160   
7361 

0.0006   
0.0009 

0.019   
0.050 

 
The goal of my work has been to find a model just as 
precise and, from the point of view of navigation, simple 
to program, computationally efficient, and easy to use. 

THE NEW MODEL 
 
Finding a linear and compact model. As a first step 
towards such a model, I found that it was possible to 
replace, without a significant loss of precision, each of the 
exponentials in (4a-b) with a linear combination of 
another two exponentials with scale heights respectively 
equal to the smallest and to the largest likely values of the 
scale heights Qw or Qh: 
 
ZDw = ZD1w exp(-[H-H0]/Q1w) +  
 ZD2w exp(-[H-H0]/Q2w) ± (< 1cm)  (5a) 
 
ZDh) = ZD1h  exp(-[H-H0]/Q1h) + 
  ZD2h exp(-[H-H0])/Q2h) ± (< 1cm) (5b) 
 
where Q1w < Qw < Q2w ;  Q1h < Qh < Q2h. 
 
Replacing in (4a-b) ZDw and ZDh according to (5a-b) 
results in a completely linear model with seven unknown 
parameters ZD1w, ZD2w, ZD1h, ZD2h, A, B, and C, to be 
estimated simultaneously with the receiver coordinates 
and the carrier phase biases in the navigation solution. 
Next, I investigated the possibility of reducing the number 
of parameters without a significant loss of precision.  The 
result was the 4-parameter model defined by the 
following equations (in bold characters): 
 
ZD = ZD1 exp(-[H-H0]/Q1w) + ZD2 exp(-[H-H0]/Q2w) + 
 ZD3 +  ZD4 ± (< 1cm)   (6)  
 
The ZD are error states obeying the following first order 
difference state equations: 
 
ZD1(ti) = ZD1(ti-1) + W1t(ti) + W1d(ti) + B1  (7a) 
ZD2(ti) = ZD2(ti-1) + W2t(ti) + W2d(ti) + B2  (7b) 
ZD3(ti) = ZD3(ti-1) + W3t(ti) + W3d(ti) + W3h(ti) 
  + B3     (7c) 
ZD4(ti) = W4(ti)     (7d) 
 
The B’s are constant biases, and the W’s are zero-mean 
Gaussian white process noise components, with 
variances:  
 
var{Wjt }  = (σ2

jt ) (ti-(ti-1))    (8a) 
var{Wjd } = (σ2

jd )(∆d(ti, ti-1))   (8b) 
var{W3h } = (σ2

h )(H(ti)-H(ti-1))   (8c) 
var{W4 }  =  σ2

4     (8d) 
var{Bk  }  = σ2

Bk     (8e) 
 
Here, j = 1, 2; k = 1,2, 3; ti, ti-1 are any two consecutive 
epochs when the filter is updated (not necessarily equally 
spaced); ∆d(ti, ti-1) is the distance between the rover 
positions at times ti and ti-1; H(ti) is the height of the rover 
at epoch ti ; finally, the σ’s are the standard deviations of 
the B’s and W’s. All W’s are 0 at the initial epoch (t0); so 
ZDj(t0) = Bj, for j = 1, 2, 3; and ZD4(t0) = 0.  



The coefficients (or “partials”) of the error states, in the 
observation equations, are the products of those in (6), 
multiplied by Niell’s wet (ZD1, ZD2) and dry (ZD3) 
mapping functions, and by a constant equal to one (ZD4). 
So the corresponding terms in the observation equation 
for the residual phase or code range ∆ρ are: 
 
∆ρ   =  ZD1 [mw(E,φ,tDOY,H) exp(-(H-H0)/Q1w)] +  
ZD2 [mw(E,φ,tDOY) exp(-(H-H0)/Q2w)]  + 
ZD3 [mh(E,φ,tDOY,H)  + ZD4 + ...    (9) 
 
Here ∆ρ is the observed minus the computed range (after 
applying some standard refraction correction), and “+...” 
indicates navigation error states not related to refraction. 
The new model was tested and tuned both with data 
simulated along various aircraft trajectories using 
information from a high-resolution weather model, and 
with actual GPS aircraft data. As a result, the following 
values were chosen for the fixed scale heights Q1w, Q2w 
in (6) and the σ’s in (8a-e):  
 
σ1t  = σ2t  = σ3t  = 0.005 m/(minute)1/2              (10a) 
σ1d = σ2d = σ3d = 0.005 m/(km)1/2              (10b) 
σ3h = 0.04 m/(m/200m)1/2                             (10c) 
σ4 = 0.005 m                (10d) 
σB1 = σB2 = σB3 = 0.1 m               (10e) 
Q1w = 1000m                (10f) 

Q2w = 3000m                (10g) 
  
In (10c) “(m/200m)” indicates that the height change 
between filter updates is measured in units of 200m. 
Therefore, the unknowns to be estimated, or refraction 
error states are three bias plus random-walk states: ZD1, 
ZD2, ZD3, and one white noise error state ZD4.  
From the state equations (7a-d), it follows that the 
corresponding state transition matrix is diagonal, with 
diagonal elements equal to 1 (for ZD1, ZD2, ZD3), and 0 
(for ZD4); this simplifies and speeds up calculations in 
the filter (and the smoother), because matrix/vector and 
matrix/matrix products become the trivial operations: “do 
nothing about the elements related to ZD1, ZD2, ZD3”, 
and “set the elements related to ZD4 to 0”. (The complete 
state vector in a precise kinematic solution has many 
more components, besides the four states of the refraction 
model: receiver coordinates, carrier phase Lc biases, etc.)  
According to (7a-d), each of the four states of the model 
is driven by some combination of three types of process 
noise, with variances proportional to the change in vehicle 
height, distance, and in time elapsed between consecutive 
filter updates. The first two states correspond to the wet 
zenith delay, and the third to the hydrostatic component; 
the three, combined, represent the residual zenith delay at 
airplane altitude: the actual zenith delay minus a zenith 
delay correction made to the data during pre-processing. 
The fourth state could represent the error in a hydrostatic 
correction based on air pressure measurements, calculated 
with equation (4a-b). In this study, it has been used to 

monitor the misclosure of the model: the smaller the 
absolute value of ZD4, the better the sum of the other 
three terms may cancel out the residual refraction, as 
intended. Reassuringly, the absolute value of ZD4 never 
exceeded 0.0001m in any of the tests carried out.  
By setting to 0 some of the process noise and biases 
uncertainties, effectively “shutting off” part of the model, 
it is possible to end up with either the white noise or 
random-walk models often used in precise GPS 
navigation. Different procedures used for this kind of 
navigation tend to give different results, particularly in 
height, as shown in a recent comparison of airplane 
trajectories calculated with different kinematic software, 
and the same data (from low-altitude flights across the 
North Atlantic) [19]. This could be due, primarily, to 
differences in the treatment of refraction. 
The ideas underlying the present model also can be used 
to develop and validate future models, for new 
applications, such as measuring the precipitable water 
vapor with GPS receivers carried on a variety of vehicles, 
in places such as oceans, where the more usual 
observations of pressure, temperature, and humidity may 
be too difficult, expensive, or impossible to make.  
 
TESTING THE MODEL 
 
Approach. For testing, I implemented the new delay 
model in “IT”, a program for geodetic surveying and 
precise navigation, which runs under Windows (Win98 
and later), UNIX, LINUX, System X, and FreeBSD, that I 
continue to develop, and to share, with a Free Software 
Foundation General License, with collaborators. 
I made two kinds of test: (a) with simulated data derived 
from a high-resolution NWM; (b) with actual GPS data. I 
made (a) first, for a preliminary validation of the model, 
and for an initial calibration of its bias and process noise 
variances. Those tests consisted of Kalman filter solutions 
to estimate zenith delays from data simulated with a 
variety of flight trajectories and meteorological 
conditions, to find the minimum number of states, with 
the right amount of a priori uncertainty, so that the post-
fit residuals would be consistently small, and the zenith 
delay recovered, never more than a few millimeters off 
the “true” (simulated) values. Once this initial stage 
seemed successfully accomplished, I began tests with real 
GPS data. Originally I had expected to carry out tests with 
additional, non-GPS “truth” (or control) data, to verify the 
results even better. Unfortunately, those flights could not 
take place as expected this year, so the results presented 
here are not the final ones. So a different kind of test had 
to be made. Simulated zenith delays were added to the 
GPS data. The idea was that, if the model is good, adding 
an artificial, but realistic, atmospheric signal should cause 
only minor changes in the kinematic solution, because the 
added signal would be largely removed by the filter, along 
with the actual delay. However, the sum of the realistic 
signal and the actual delay cannot be much larger than a 



normal delay. The Kalman filter is likely to be “stressed” 
by unrealistically large delays, since the a priori values of 
the bias and process noise uncertainties (the sigmas in 
10a-e), calibrated for normal delays, may prove too small 
to estimate correctly much larger delays. 
 
The GPS flight data.  To test the model as fully as 
possible, the kinematic solutions were made in  Precise 
Point Positioning (PPP) mode, so the results would be 
more sensitive to the effect of the atmosphere than in 
differential mode, with no cancellation of the slant delays 
at the rover with those at reference sites.  
Of the GPS data available, the most adequate were from a 
flight in Svalbard (Spitzbergen), in the Arctic, in July of 
2005. The data were collected by members of Professor 
Tevi Murray’s group, now at Swansea University, in 
Wales, as part of a project to map glaciers with an 
airborne laser altimeter.  
In addition to the 10Hz dual-frequency data from the GPS 
receiver on the airplane, the research team collected, 
simultaneously, similar data from several land receivers, 
including a very distant one, KELY, in Kangerlussuaq, on 
the West coast of Greenland. The reason for getting the 
Greenland data was to compare two long baseline, 
differential, kinematic software, by “navigating” with 
each one of them a fixed site with very well known (cm-
level) coordinates that could be used as “truth”, after 
correcting for the earth-tide. The test was arranged by 
Matt King, at the University of Newcastle upon Tyne. 
The KELY site is one of the permanent IGS stations. This 
offers two special advantages: (1) a time-series of precise 
estimates of the actual zenith delay for the day of the 
flight is available from the Analysis Center at the 
Geodaetisches Forschung Zentrum (GFZ), in Potsdam; 
(2) being one of the IGS Reference Frame Stations (RFS),  
a 30-second subset of the 1Hz GPS data was probably 
used to calculate the precise orbits and 30-second clocks 
for that day at the CODE center in Berne, later made 
available through the CDDIS data archive at NASA 
Goddard Space Flight Center. Those orbits and clocks 
should have errors whose negative effect on the PPP 
solution may be smaller than otherwise, because they 
share some of the data, so they are less likely to obscure 
the effect of the delay model being tested.  
A similar case is the Svalbard flight, as the airplane was 
always relatively near NYAL, the IGS RFS site at Ny-
Alesund. The airplane took off and landed back on the 
same airfield, near Longyearbyen, flew some 80km to a 
glacier, and then proceeded to traverse over it, at a height 
of about 1400 meters, collecting altimeter data (Figs. 6 
and 7). The flight lasted some 2hours and 15 minutes. The 
airfield is 58m above sea level. 
 
Simulating the neutral delay.  To obtain the artificial, 
but realistic, delays needed for validating and calibrating 
the model, I made use of digital maps of ZDw on the 
terrain, and of air pressure reduced to mean sea level 

(“altimeter”), produced with real meteorological data by 
NOAA for its Northeast HA-NDGPS Test in 2004, and 
distributed freely over the Internet (Figure 2). I converted 
the air pressure to ZDh0 with (4a-b), and chose H0 = 230 
(the height at KELI, i.e. ignoring the shape of the 
topography in the case of ZDw). 
I interpolated linearly each zenith delay, first in space, 
along the straight line between the two nearest grid points 
on the map, to the instantaneous horizontal position of the 
imaginary aircraft, and then in time, between the values at 
that position obtained from consecutive maps (the pair of  
maps in Fig. 2 is one of a series of “snapshots” taken at 
two-hour intervals), and finally upper continued those 
results to the airplane altitude H using Schueler formulas 
(3a-b), with wet and hydrostatic scale heights Qw = 
2500m, and Qh = 7500m, respectively. H was the height 
along an imaginary flight path, with the ground track 
shown with a thin horizontal blue line in the ZDw map of 
Figure 2 (left), and a vertical flight profile consisting of a 
an initial climb at a fixed rate of 200m/min, to a 
predetermined height, followed by a period cruising at 
that height, always with the same ground speed, and 
ending with a final descent, at the same vertical rate as 
during the climb, but with opposite sign, all the way down 
to the starting altitude.  
 

 
 
Figure 2. Zenith wet delay (left), and pressure reduced to 
mean sea-level (“altimeter”, right). Blue line shows 
simulated flight ground track (850km long). 30cm of ZDw 
near the start (at the line’s leftmost point), only to 4cm at 
the end. The plane flies over places where air moisture is 
high, and also where the air is dry. (Grid points are dark 
dots regularly arranged in rows and columns.) 
 
To calibrate the model, I computed the zenith delay along 
a number of such simulated flights, all with the same 



duration, epoch, and ground track, but each with a 
different ground speed and altitude profile.  

KELY: ZENITH DELAY SIMULATED ALONG ASSUMED FLIGHT PATH
ADDED TO GPS DATA AFTER REMOVING THE ACTUAL DELAY

A straight West-East trajectory, 850 km long.
(Wet delay at ground level; hydro delay ~2.3 m throughout)
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Figure 3. The simulated wet zenith delay (light blue), 
plotted along the blue line of Fig. 2, and the vertical flight 
profile (dark blue) used in the test with the Svalbard 
aircraft data. Zdh was ~2.3m (not shown here). 
 
Tests with GPS data. Two such tests were made: one 
with data from Greenland, the other from the airplane’s 
receiver, in Svalbard. For each, a simulated ZD was 
calculated assuming a ground-speed of 120m/s, so the full 
850km “ground track” was “flown” in about 2hs, 15min.  
 
(1) The Greenland Test. The 1Hz data provided by the 
operators of the IGS site KELY was post-processed using 
the PPP method, to obtain a kinematic trajectory of 
estimated instantaneous positions. These were compared 
to the known, fixed position of the site, after correcting 
for the earth tide. The site position being known with sub-
cm precision, the vertical (Up), East (E), and North (N) 
discrepancies between instantaneous and known 
coordinates are, in fact, the errors in the kinematic 
solution, except for a small constant 3-D offset, which is 
the error in the site coordinates. Those discrepancies are 
plotted in Figure 4, along with their global statistics: their 
mean vector (or 3-D) offset, their 3-D RMS about the 
mean, and their largest 3-D vector modulus. Those values 
are typical of a precise, post-processed, PPP solution, 
with good orbits and good 30-second clocks. 
The solution was repeated with the data modified as 
follows: the precisely estimated total zenith delay 
computed at GFZ, and obtained in ASCII format from the 
CDDIS archive at Goddard, was converted to slant delay 
in the direction of each satellite, with the Niell “dry” 
mapping function. The excess range corresponding to this 
delay was subtracted from the data. The simulated total 
zenith delay, calculated along an imaginary flight line 
with the vertical profile shown in Figure 3, and converted 
to slant delay with the same Niell mapping function, was 
then added to the data, virtually replacing the real delay 
with the simulated one. The solution was then repeated. 
The discrepancies between this new solution and the 
known coordinates of KELY are shown in Figure 5. 

Comparing the plots for the new solution to those of Fig. 
4 one can see very little change (1-2cm) in the global 
statistics, and a noticeable, but small change in the shape 
of the plots. This is at it should be, if the new refraction 
model is working well, helping eliminate most of the 
delay regardless of whether it is the true one or the 
simulated one, so the very small residual delay left 
uncorrected cannot affect either solution significantly. 
 

IGS Site "KELY" in Greenland, 5 July 2005
PPP Solution Without Simulated Troposphere

3-D Mean: 7.5 CM; 3-D RMS: 4.3 CM; 3-D Max: 15.0 CM
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Figure 4. The discrepancies between the instantaneous 
position of KELY, according to the PPP kinematic 
solution, and the published precise coordinates of this IGS 
site. Solution made with the unmodified GPS data. 3-D 
Mean: 7.5cm, 3-D RMS: 4.3cm, 3-D Max.: 15cm. Up 
(blue), East (red), North (black).  
 

IGS Site "KELY" in Greenland, 5 July 2005
PPP Solution With Simulated Troposphere

3-D Mean: 6.8 CM; 3-D RMS: 3.4 CM; 3-D Max: 13.0 CM
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Figure 5. Same as Fig. 4, but with the true delay, based on 
the actual total ZD (as estimated at the IGS Analysis 
Center GFZ, in Potsdam), replaced with a simulated delay 
calculated along the flight path defined by the blue line 
(“ground track”) in Fig. 2, using meteorological data from 
the NOAA’s NE Test, and the vertical profile shown in 
Fig. 3. 3-D Mean: 6.8cm, 3-D RMS: 3.4cm, 3-D Max.: 
13cm. These values are very similar to those in Fig. 3.  



 (2) The Svalbard airplane test. Figure 6 shows the 
actual ground track of the airplane during a flight in 
Svalbard. The plane took off from the Longyearbyen 
airfield, and flew to survey a glacier some 80km to the 
NW, where it followed a series of traverses during the 
actual survey, mapping the ice surface with a laser 
altimeter. Then it returned and landed on the same 
airfield. Figure 7 shows the actual height profile of the 
same flight, and the simulated zenith delay at the altitude 
of the airplane (based on the meteorological data shown 
in Fig. 2), upper-continued from mean sea level with the 
Schueler equations (4a-b). The exponential decay of the 
main terms of those equations explains the “inverted” 
shape of the delay plot: both components of refraction 
decrease, as the airplane ascends and there is less air and 
water vapor left above it. (There is virtually no water 
vapor at heights above 5km). 
 

Svalbard Flight of 5 July 2005 
Ground Track
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Figure 6. The ground track of the Svalbard flight. 
 

SVALBARD: SIMULATED EXTRA ZENITH DELAY AND 
AIRPLANE HEIGHT
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Figure 7.  The height profile of the Svalbard flight 
(magenta), and the simulated total ZD (minus a nominal 
ZD) at aircraft height (blue). 
 

Since, unlike KELY, there is no precise, independent 
estimate of the zenith delay for the airplane, a nominal 
zenith delay ZDnom = 2.27exp(-0.000116 H) [m] was 
subtracted from the simulated zenith delay, to avoid 

ending up with a modified delay twice as large as normal, 
which could have “stressed” the filter. 
The Niell hydrostatic mapping function was used, as in 
the KELY test, to convert ZD to slant delay SD. Figure 8 
shows the difference between two PPP solutions made 
with and without the artificial delay added to the GPS 
data. Because of problems with the data during the first 
five minutes of the session, the takeoff and the first half of 
the climb are missing in both precise PPP kinematic 
solutions. The difference between the two solutions is an 
indication of how useful the new model could be for 
mitigating the effect of the neutral delay on the solution. 
The global statistics are shown also in the Figure. It is 
encouraging to see that the largest difference is 6.7cm. 
 

Differences in PPP Solutions With and Without Simulated 
Tropospheric Refraction Svalbard Flight of 5 July 2005

(Airplane Height in (m), Relative to 1st Epoch)
3-D Mean: 1.0CM; 3-D RMS: 2.2CM; Max. dHeight: 6.7CM 
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Figure 8. Differences between the PPP kinematic solution 
of the Svalbard flight with and without adding the extra 
delay corresponding to the simulated ZD shown in Fig. 7. 
3-D Mean: 1cm, 3-D RMS: 2.2cm, Max. Discrepancy: 
6.7cm 
 
CONCLUDING REMARKS 
 
The tests conducted so far indicate that the new refraction 
model could be used for aircraft navigation of sub-
decimeter precision, at heights ranging from sea level to 
20km. It is computationally efficient and easy to 
implement within a recursive trajectory determination 
scheme, be it in real-time or in post-processing, in precise 
differential or point-positioning modes.  
The mathematical delay model is completely linear in its 
four error states. It subsumes the widely used single-state 
white noise and random walk models, since it can be 
reduced to either by setting to zero some of the state 
initial values, a priori variances, and process noise 
components. 
The model needs to be tested and tuned further, with more 
simulations and with more real satellite data, under a 
wider variety of conditions. The results should be verified 
with strong “truth” data. I expect that such additional tests 
will take place in the near future. 
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